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INTERACTION OF PLANE NON-PARALLEL JETS 

Yu. G. Gurevich UDC 532.526 

The collision of near-wall jets on a smooth surface was examined by many authors [i, 
2]. Within the framework of the theory of potential jet flows, the position of the inter- 
action domain remains undetermined in this problem while the direction of the resultant 
jet is determined uniquely. Taking account of viscosity permits finding the position of 
the interaction domain [3]. It is important to note that integral conservation laws and 
the assumption that viscosity is not essential in the interaction domain are sufficient 
to establish the direction of the resultant jet. It is not necessary to know the pressure 
distribution on the surface here. 

A feature of the problem of jet collision in the neighborhood of a corner is the fact 
that the integral conservation laws do not permit establishment of the direction of the 
resultant jet if the pressure distribution on the surface is not known in the interaction 
domain. The solution of this problem within the framework of the theory of potential jet 
flows is also not unique and does not permit the unique determination of the resultant jet 
direction. 

A simple approximation solution of the problem of the collision of plane submerged 
incompressible near-wall jets in the neighborhood of a corner is represented in this paper 
within the framework of the infinitely thin jet approximation. Laminar and turbulent flow 
are examined in a quasilaminar approximation. It is noted that small changes in the inter- 
acting jet parameters can radically alter the resultant jet direction. The expediency is 
also shown of utilizing the infinitely thin jet approximation in other jet flow problems. 
A qualitative examination is performed of problems about jet impact in a corner and on the 
collision of several jets in space. 

I. Let two plane near-wall submerged jets directed toward the line of plane inter- 
section be propagated along two intersecting planes ~i and ~2 (Fig. i). The angle 7 between 
the planes and the coordinates x I and x 2 are taken along the surfaces gl and ~2, respective- 
ly, along the normals to the line of intersection on which x I = 0, x 2 = 0. Let us assume 
that the domain of jet interaction lies near a point with~coordinates x~ = 0, x 2 = 0 and 
that the jet parameters at a certain distance from the corner are independent of the flow 
in the interaction domain. It is assumed that the jet sources are sufficiently remote from 
the interaction domain. We assume that the flow therein is stationary and has the following 
configuration: near the corner each of the jets is separated from the surface (xl ~ and 
x2 ~ are the coordinates of the point of jet separation on the surfaces ~l and ~2), the flow 
in front of the separation point is unperturbed, behind the separation point a domain is 
shaped with small changes in the pressure and low velocities which is considered stagnant, 
and one resultant jet is formed because of the collision. Assuming the jet parameters out- 
side the interaction domain known for x I > xl ~ and x 2 > x2 ~ we determine the resultant 
jet direction, the pressure in the stagnant zone, and its characteristic dimensions. 

The question of the motion of the jet being separated must be examined to solve the 
formulated problem. Later the jet motion after separation is investigated in the infinite- 
ly thin jet (ITJ) approximation. 

2. Let $ be a vector line of the momentum field and outside this line the momentum 
equals zero. Let us write the momentum conservation law in the $, �9 coordinate system 
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associated with the line $ (the coordinate ~ is measured along the line and ~, along the 
normal to it): 

dI/d~ = f~, I /R  = F~, ( 2 . 1 )  

where I is the momentum in the direction ~; R is the radius of curvature of the line ~; 
F~ and F$ are the appropriate components of the external force vector acting per unit length. 

If $ separates two domains with different pressures and the pressure difference is of 
magnitude Ap, then 

I /R  = Ap. ( 2 . 2 )  

A number o f  i n t e r e s t i n g  p r o p e r t i e s  r e s u l t s  f rom t h e  r e l a t i o n s h i p s  ( 2 . 1 )  and ( 2 . 2 ) :  a) f o r  
Y$ = 0 t h e  q u a n t i t y  I = c o n s t  a l o n g  t h e  l i n e  $; b) f o r  F~ = 0 t h e  l i n e  $ i s  s t r a i g h t ;  c)  
f o r  F~ t h e  l i n e  $ i s  t h e  a r c  o f  a c i r c l e  ( f o r  i n s t a n c e ,  i f  $ s e p a r a t e s  two domains w i t h  
d i f f e r e n t  p r e s s u r e s ) ;  d) t h e  l i n e  $ w i t h  momentum I can b r a n c h  o f f  a l o n g  a t a n g e n t  in  l i n e s  
w i t h  momenta I z ,  I 2 ,  . . . .  , I n ,  where I 1 + I2 + . . .  + I n = I .  Le t  us n o t e  t h a t  t h e  laws of  
ITJ  m o t i o n  f o l l o w  f rom t h e  momentum c o n s e r v a t i o n  law w i t h o u t  i n v o l v i n g  t h e  mass c o n s e r v a t i o n  
law. The mass f low a l o n g  t h e  l i n e  $ can change ,  which c o r r e s p o n d s  t o  t h e  mot ion  of  a r e a l  
jet. 

Within the framework of the ITJ approximation the problem about the motion and inter- 
action of submerged jets reduces to geometric problems. For example, during the collision 
of two jets on a plane with the momenta 11 and 12, each will stand off from the surface 
along the arc of a circle touching this surface. The resultant jet will emerge from the 
point of tangency of the circles to each other, directed along the tangent having the momen- 
tum I E = I l + 12 . Since the difference between the pressure in the stagnant zone and the 
pressure in the remaining space is identical for each of the jets, then the radii R I and R 2 
of the arcs of the circles are proportional to 11 and 12 of the respective jets. The momen- 
tum conservation law is satisfied automatically and the resultant jet direction is independ- 
ent of the pressure in the stagnant zone. 

The ITJ approximation is evidently applicable for small values of 6/R (6 is the charac- 
teristic transverse dimension of the jet). If I = 6U2p (U is the characteristic velocity 
in the jet), then 6/R = Ap/pU 2 from Eq. (2.2). Therefore, application of the approximation 
is related to the proposition that the pressure drop under whose action jet rotation occurs 
should be small as compared with the velocity head in the jet. 

A comparison of the solution obtained by using this approximation with the exact 
solution of the problem of impact of a potential jet on an obstacle mounted at an angle 

= ~/2 to the direction of unperturbed jet motion [1] is represented in Fig. 2 for a quant- 
itative estimate of the suitability of the ITJ approximation. Here the pressure in the 
stagnant zone in the ITJ approximation equals the stagnation pressure. Then Ap = pu02/2 
and R = 260 (u0, ~0 are the velocity and thickness of the unperturbed potential jet). The 
curve i is the outer boundary of the potential jet, 2 is the line of ITJ motion. The pro- 
file of the square of the absolute value of the velocity V in the potential jet is con- 
structed along the angle bisector. It is seen that the pressure in the domain below the 
line 2 changes by approximately 10% from the velocity head of the unperturbed jet, while 
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Fig. 3 

it is considered constant in the ITJ approximation. The integral I = y pV2ds = 0;7710. 
0 

In the ITJ approximation this quantity is also considered constant and equal to I 0 (the 
coordinate s is measured along the angle bisector, I 0 ffi pu0260). Therefore, the ITJ 
approximation turns out to be completely applicable even when the pressure increase in the 
turning domain equals the velocity head of the unperturbed jet. 

3~ To solve the problem formulated in Sec. i about the collision of two near-wall 
jets in a corner in the ITJ approximation, it is necessary to construct two circles tangent 
to the sides of the corner ~ and to each other. The radii of the circles are proportional 
to the momenta of the interacting jets (Fig. 3). 

The condition for tangency of the circles to the sides of the corner and to each other 
can be written in the form 

RI(I + cos a) + R2(cos 7 + cos ~) = x~ ~ sin 7, 

RI(t  -t- cos a) + R~ [1 + cos (7 -- ~) ] = x~ sin 7 -t- x2 ~ sin (7 -- ~), ( 3 . 1 )  

where RI, R 2 are the radii of the circles proportional to the jet momenta; xl ~ x2 ~ are 
coordinates of the points of jet separation or coordinates of the point of tangency of the 
circles and the sides of the corner, and = is the angle of the resultant jet direction 
(see Fig. 3). 

It is seen from Eq. (3.1) that if R l and R 2 are given, then = is not determined single- 
valuedly since xl ~ and x2 ~ are unknown. The boundary values are easily determined in the 
interval of possible = for given R I and R 2. Let R l = R2, then for given ~ the resultant 
jet direction is normal to the line x 2 and ~ = y - ~/2 if the circle with radius R I is tan- 
gent to the lines x I and x 2 simultaneously. In the other extreme case = = ~/2. For exam- 
ple, for u = ~/2 and 11 = 12 the relationships (3.1) are satisfied for any ~ in the range 
0 < ~ < ~/2. Definite values of xl ~ and x2 ~ correspond to each =. It is easy to note that 
in the general case ~ > ~ or = < 0 are possible. ~hen the resultant jet direction will 
intersect one of the coordinate lines and the flow configuration presumed cannot be realized. 

Following the approach taken in the approximate theories of separation flows [4], let 
us take account of effects associated with viscosity for a single-valued choice of the solu- 
tion satisfying Eq. (3.1). A local asymptotic theory of laminary near-wall jet separation 
as Re + ~ is constructed in [2]. It is shown that a thin near-wall sublayer in which vis- 
cosity exists occurs in the neighborhood of the separation point in the jet. Under the 
action of the displacing effect of the viscous sublayer, the main part of the jet stands 
off from the surface and its motion is described by the Euler equations. Simple algebraic 
relationships in ui, 6i, Z, R, hp are proposed in [3] for laminar or turbulent jets in a 
quasilaminar approximation, where ui, 6i, s are the characteristic velocity, thickness, 
and longitudinal dimension of the viscous sublayer in the neighborhood of the separation 
point, R is the characteristic radius of jet rotation after separation, and Ap is the excess 
pressure in the zone behind the separation 

ui~/2 = h p l  u / l  = ~/512, I / R  = hp ,  5~1l 2 = 3/(4R), ( 3 . 2 )  

ui/um = ~ ( 5 i / 5 ~ ) ;  

the function ~ describes the velocity profile in the boundary layer in the unperturbed 
jet and is considered known, I is the unperturbed jet momentum, ~ is the coefficient of 
kinematic turbulent velocity in the unperturbed jet at a distance n = 6 i from the wall, u m 
is the maximum velocity in the jet, and 6 m is the distance from the wall at which the velo- 
city takes on the value u m. 
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The I, v, Um, 8m in the relationships (3.2) are unperturbed jet parameters ahead of 

the separation point and depend on the coordinates of the separation point; consequently, 
by solving Eq. (3.2) for each of the interacting jets we obtain: 

R 1 = Rl (x l~  R 2 = R2(x2~ Apl(xd) = ap~(x~~ ( 3 . 3 )  

The relationships (3.3) together with Eq. (3.1) permit determination of ~xz ~ x2 ~ RI, R~, 
hpl = Ap2 and the resultant jet direction (the angle a) if the dependences of the unperturbed 
jet parameters on the longitudinal coordinates x I and x 2 are known. The last relationship 
in Eq. (3.3) is the condition that the pressure in the closed zone bounded by the sides of 
the angle and by the jets being separated is constant. 

As an illustration, let us examine the interaction of near-wall turbulent submerged 
jets by considering the jets self-similar ahead of the interaction domain. Then we write 
for the boundary layer in the near-wall jet [5] 

U/Um = (n/6m) 1/7 (3.4) 

(n i s  a c o o r d i n a t e  measured  from t h e  s u r f a c e  a c r o s s  t h e  j e t ) .  T h e r e f o r e  

The quantity I = 

q;)(8i/~m) = (~il'~m) 117" ( 3 . 5 )  

(p ------ 1) in  Eq. has  u2dn ( 3 . 2 )  t h e  form 
O 

I = 4.76u~26~. ( 3 . 6 )  

The turbulent friction in the boundary layer of the near-wall jet is T = 0.01Um = [5]. Then 
= ~/(~u/~n) for n = 6 i and taking account of Eq. (3.4) we obtain 

v = O,075ium2/ui.  (3.7) 

Solving Eq. (3.2) with Eqs. (3.5)-(3.7) taken into account, we have 

ut = 0.81um, 5~ = 0,235m, Ap = 0.g3um 2, R = t4ASm, t = 2,t5~. 

F u r t h e r m o r e ,  u s i n g  t h e  r e l a t i o n s h i p  f o r  u m and ~m [5]  (u  m = 3 .Suo/LVL-~o,  6 m = 0 . 0 1 L ( u o ,  
60 a r e  t h e  v e l o c i t y  and w i d t h  in  t h e  i n i t i a l  j e t  s e c t i o n ,  and L i s  t h e  d i s t a n c e  from t h e  
i n i t i a l  j e t  s e c t i o n ) ,  we w r i t e  Eq. ( 3 . 3 )  in  t h e  form 

u ~ l / ( n o - - X ~ )  = u ~ J ( n o - - X ~  ),  Ri = 0A44(n0- -x~)  (i = i ,2)  ( 3 . S )  

(L 0 i s  t h e  d i s t a n c e  be tween t h e  i n i t i a l  j e t  s e c t i o n  and t h e  a n g l e ) .  
t h e s e  d i s t a n c e s ,  as  w e l l  as  t h e  i n i t i a l  j e t  s e c t i o n s ,  a r e  i d e n t i c a l .  
o f  x~ ~ and x2 ~ a r e  o f  t h e  o r d e r  o f  R. Le t  us i n t r o d u c e  

A = (uol--Uo2)/2u*, Ro = 0A44Lo, ( 3 . 9 )  

e = R o l l  o, u* = (Uol + uo2)/2. 

Then taking Eq. (3.9) into account, we represent Eqs. (3.1) and (3.8) as 

t + 2 cos ~ - 6  cos y = X2 ~ sin ?, ( 3 . 1 0 )  

2 -p cos ~ + cos (? - -  a) = X ~ s i n a - t - X 2  ~  

A = (e/4)(X2 ~ - -  X~) (Xg ~ = xi~ i = t ,  2) 

by c o n s i d e r i n g  E ~ 1 and A < 1 and k e e p i n g  o n l y  t h e  p r i n c i p a l  t e r m s .  

We o b t a i n  f o r  t h e  i n t e r a c t i o n  o f  j e t s  w i t h  n e a r b y  p a r a m e t e r s  (A ~ 1) in  an a n g l e  w i t h  
7 = ~/2 (E = 0.144) 

sin (~/4 -- a) = 40A. (3 .  i i ) 

It is seen from Eq. (3.11) that for A = 0; 0.07; --0.07 ~ = ~/4; 0; ~/2. Therefore, small 
changes in the initial velocity of each of the jets will result in a strong change in the 
resultant jet direction. 

It is considered that 
The scale of variation 
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A preliminary experimental investigation showed that for h = • the angle ~ took 
on the values 0 and ~/2, respectively. However, for smaller values of ~ the resultant jet 
direction was unstable. 

4. The ITJ approximations utilized in Sec. 3 can be useful for a qualitative analysis 
of certain other jet flows; for instance, in the problem of jet impact in a corner. Let 
a plane submerged jet be directed along the x axis parallel to the angle bisector and make 
impact on the intersecting surfaces forming the angle ~. The apex of the angle is at a 
point with coordinate y (Fig. 4). 

The jet momentum equals I 0. Because of the collision the jet is separated into two 
that rotate along the arcs of circles with radii R I and R 2 and the momenta of these jets 
are I l and I2, where 11 + 12 = I 0. A zone in which we consider the pressure constant and 
equal to P0 = P + Ap occurs in the interaction domain (p is the pressure outside the inter- 
action domain). Then R i = Ii/h p (i = I, 2). The force acting on the angle has the compo- 
nents F x = I0(l + cos (~/2)), F, = Ap(R I - R2) sin (~/2). Taking into account that a = ~/2, 
the first equation in Eq. (3.1~ can be written as 

R1 --  R2 = --Y cos (?/2)/cos ~ (?/4). 

Then Fy = ~py s i n x / [ 2  cos  2 ( 7 / 4 ) ] .  I t  i s  seen  t h a t  t h e  f o r c e  component  Fy depends  on t h e  
a n g l e  7 and on t h e  c o o r d i n a t e  y w h i l e  F x depends  o n l y  on ~. I f  o n l y  a f o r c e  caused  by t h e  
jet impact acts on the angle in the direction y and the velocity of angle motion is small 
as compared with the fluid velocity in the jet, then the equation of angle motion in the 
direction y has the form 

y ~ --y sin ~[2 cos ~ (?/4)]. 

Therefore, for 7 < ~ the angle motion will be oscillatory, where the frequency f of 
the oscillations depends on 7: f ~ 2~/cos (7/4). The maximal frequency corresponds 
to ~ = 103.6 ~ . For y = ~ there will be no oscillations. 

5. Another example of a problem in which the ITJ approximation can be useful is the 
problem of the collision of submerged jets in space. In the ITJ approximation a closed 
domain of elevated pressure should occur during jet interaction, whose boundaries are formed 
by arcs of circles tangent to each other that are convex toward the elevated pressure domain. 
Let N jets collide in a certain domain of space. By virtue of the mentioned geometric 
features of the elevated pressure domain boundary between the two adjacent jets, a jet 
should exist that is directed from the interaction zone, as is displayed in Fig. 5 in the 
example of the collision of three jets. 

This means that within the framework of the approximation taken, the following asser- 
tion can be formulated: during interaction of plane jets in a space just as many jets will 
flow out of the interaction domain as flow into the interaction domain. 

Let us number the jets flowing into the interaction domain from 1 to N. Let us denote 
the jet momenta by I k (i ~ k ~ N), the angle between the k-th and (k + l)-th jets by 7k 
for k ~ N - 1 and the angle between the N-th and first jet by yN as is shown in Fig. 5. 
In each angle ~k (i ~ k ~ N) two relationships (3.1) can be written for R! k, R2k+l, x ~ 

x0k+1, ~k (see Fig. 5) for k ~ N - 1 and for yN relative to RI N, R2 I, xi ~ x ~ a N. More- 
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over, RI k + R2 k = Ik/Ap (Ap is the excess ~ressure in the interaction zone). Therefore, 
3N relationships in the 4N + i unknowns RI ~ do not permit a single-valued description of 
the interaction pattern, in particular, finding the directions of the jets flowing out of 
the interaction zone. An analogous result is obtained in the problem of the collision of 
two potential jets in a classical formula within the framework of TFKP [i, 6]. A sufficient 
number of papers (for example, [i, 7], etc.) are devoted to seeking the conditions govern- 
ing the unique solution of this problem. 

If the colliding jets are not potential, then it is natural to assume that the stagna- 
tion pressures of the current jets according to which separation of each of the interacting 
jets occurs are mutually equal and equal to the maximal pressure in the interaction zone 
(this condition is automatically satisfied for potential jets since the stagnation pressure 
of all the current jets is identical). If the stagnation pressure profiles in each of the 
interacting jets are known, then the stagnation pressure of the dividing jets of current 
p0 k is a known function of RIk/R2 k Then N relationships 

Ap = I~(RI~/B2~), 

can still be written, which will yield 4N relationships in 4N + 1 unknowns. 

Therefore, it is sufficient to give the excess pressure, for example, in the inter- 
action zone or the position of the dividing current jets in one of the interacting jets 
to select the unique solution in the ITJ approximation. Depending on the specific form 
of the velocity profiles of the interacting jets here and the angles ~k, no current jet 
can be dividing, i.e., the system of equations has no solution for any value of Ap. In 
the author's opinion, the following is the most natural condition for the selection of the 
value of Ap: Ap should be the least of those possible. 

It is seen from Fig. 5 that a situation is possible when the direction of one of the 
jets flowing out of the interaction domain will intersect one of the adjacent inflowing 
jets. Then, as for the collision of jets in an angle (Sec. 3), the flow configuration pre- 
sumed cannot be realized. 
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